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Supporting Computer Science curriculum:
Exploring and learning linked lists with iList

Davide Fossati, Barbara Di Eugenio, Christopher Brown, Stellan Ohlsson, David Cosejo, and Lin Chen

Abstract—We developed two versions of a system, called iList, that helps students learn linked lists, an important topic in Computer
Science curricula. The two versions of iList differ on the level of feedback they can provide to the students, specifically in the explanation
of syntax and execution errors. The system has been fielded in multiple classrooms in two institutions. Our results indicate that iList
is effective, is considered interesting and useful by the students, and its performance is getting closer to the performance of human
tutors. Moreover, the system is being developed in the context of a study of human tutoring, which is guiding the evolution of iList with
empirical evidence of effective tutoring.

Index Terms—K.3.1.b. Computer-assisted instruction, K.3.2.b Computer science education, I.2.1.d. Education, H.5.2.e. Evalua-
tion/methodology, Constraint-based modeling, Intelligent tutoring systems
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1 INTRODUCTION

THIS paper describes the iList project, an interdisci-
plinary research effort whose goal is to understand

the characteristics of effective tutoring and implement
them into Intelligent Tutoring Systems in the domain of
Computer Science data structures and algorithms.

This project is part of a larger effort that we have
undertaken at the University of Illinois at Chicago in the
last eight years. We collect, analyze and mine tutorial
dialogues for tutoring strategies that are cognitively
plausible and correlate with learning. We computation-
ally model those strategies in Natural Language Inter-
faces to Intelligent Tutoring Systems. Over the years,
we have moved towards systems that generate more
sophisticated feedback, in more realistic application do-
mains. In our first project, DIAG-NLP [1], we showed
that more concise and abstract feedback would lead to
more learning in diagnosing simulated malfunctions of
a mechanical system. In our second project, we showed
that modeling various tutoring moves by an expert tutor
in an abstract problem solving task again engenders
more learning [2], [3]. Finally, with iList, we have moved
to a real-world application that has the potential of
providing substantial support in introductory Computer
Science classes. Moreover, the interface of iList was an
initial building block for our parallel research project
on peer learning [4], which is also meant to support
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introductory Computer Science classes. To the previously
reported results from the iList project [5], [6], [7], this
paper adds important contributions:

• A more detailed description of the iList system.
• A new feedback module that delivers more sophis-

ticated responses to students’ syntax errors.
• A more comprehensive evaluation of the system,

with almost four times as many students than the
previous evaluation.

• New results of our study of human tutoring.
As this paper demonstrates, iList has reached a level

of maturity that makes it suitable for a wider adoption in
Computer Science courses. We hope that this paper will
encourage researchers and educators to consider using
iList with their students.

The goal of this paper is not only to present a useful
system, but also to explore how the improvement of nat-
ural language feedback impacts its effectiveness. This is
why in this paper we compare two versions of iList, and
we describe our analysis of human tutoring dialogues
from which the design of the system is guided.

2 BACKGROUND AND RELATED WORK

One-on-one tutoring has been shown to be a very effec-
tive form of instruction, compared to other educational
settings, like traditional classroom-based information
delivery [8]. For more than twenty years, researchers
have been working on discovering the characteristics
of tutoring. One of the goals of such research is to
understand the strategies tutors use, in order to design
effective learning environments and tools to support
learning. Among the tools, particular attention has been
given to Intelligent Tutoring Systems (ITSs), which are
sophisticated software systems built to provide person-
alized instruction to students, in some respect similar
to one-on-one tutoring [9], [10]. Many of these systems
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have been shown to be very effective [11], [12], [13], [14],
[15]. In many experiments, ITSs induced learning gains
higher than those measured in a classroom environment,
but lower than those obtained with one-on-one human
tutoring. Therefore, the belief of the research community
is that knowing more about human tutoring would be
beneficial to the design of better ITSs.

Among the many research problems in the field of
ITSs, we are primarily interested in delivering effective
feedback to students. There are many different forms of
feedback in one-on-one tutorial interactions. Feedback
can be provided by means of verbal or non-verbal com-
munication. Verbal communication can be either spoken
or written. Non-verbal communication includes, but is
not limited to, body gestures, sounds, and pictures. We
can divide tutorial feedback in two important categories:
negative feedback and positive feedback [16].

Negative feedback can be provided in response to
students’ mistakes. An effective usage of negative feed-
back would help the student correct a mistake and put
him/her in the condition of not repeating the same (or
a similar) mistake again, effectively providing a learning
opportunity to the student. People can indeed learn a lot
from making mistakes and correcting them [17].

Positive feedback is provided in response to some cor-
rect input from the student. Positive feedback can help
students reinforce some correct knowledge they already
have, or successfully integrate new correct knowledge, if
the correct input provided by the student was originated
by a random or tentative step. Several studies, including
ours, have started to provide evidence of the importance
of positive feedback in tutoring [3], [6], [18], [19].

More detailed characterizations of feedback have been
reported in several studies, like the Human Tutoring
Project [20], [21], [22] and the work of the CIRCSIM-
Tutor group [11]. Differences in tutoring behavior with
respect to feedback emerged from different studies. For
example, tutors in the Human Tutoring Project tried to
avoid giving direct negative feedback, opting more for
questioning the students and providing hints. On the
other hand, tutors in the CIRCSIM-Tutor group tend to
be more direct. Those differences might be influenced by
a variety of factors, such as the subject domain, and of
course tutors’ individual characteristics.

Like other forms of instruction, one-on-one tutoring
have characteristics that are dependent on the subject do-
main. Among many disciplines, basic Computer Science
has received only little attention from the educational
and ITS research communities. Existing work focuses
primarily on computer literacy [23], programming lan-
guages such as Lisp [24], [25], C++ [26], Java [27], general
programming and design skills [28], databases [14], and
special topics such as search algorithms used in Artificial
Intelligence [29]. Although the previous list might seem
long, a fundamental topic has been almost neglected:
basic data structures and algorithms, which are in the
core of CS undergraduate curricula [30], and have been
identified as difficult concepts for students to master
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Fig. 1. Research methodology

[31]. ADIS [32] tutors on basic data structures, but its
emphasis is on visualization more than on adaptive,
intelligent tutoring; also, it appears to have been more
of a proof of concept than a working system, and has
not been developed further.

This research focuses on the tutoring of basic data
structures, specifically on linked lists.

3 METHODOLOGY
This research has two main goals. On the one hand, we
want to build an effective system that can be successfully
used in introductory computer science classes around
the world. On the other hand, we want to discover
the pedagogical elements that make human tutoring
effective, in order to build computational models that
can improve the performance of our system, and get a
better understanding of complex dynamics of teaching
and learning that can be transfered to other contexts and
domains. To accomplish these goals, we are following an
iterative methodology, represented in Figure 1. Guided
and motivated by cognitive and learning theories, we
are collecting naturalistic tutoring sessions, transcrib-
ing, annotating, and analyzing them using statistical
approaches. Cognitive theories allow us to formulate
hypotheses about features that could correlate with
learning, and we are testing those hypotheses by regress-
ing those features against the learning outcomes of the
students interacting with our human tutors. In this way,
we are able to understand which features are worthwhile
modeling and implementing in our system. At the same
time, motivated by the success and advancements of the
Intelligent Tutoring Systems community, we are devel-
oping a robust system, deploying it in classrooms, and
analyzing the recorded interaction between students and
system. When new results are obtained we feed them
back into the process so they can guide the subsequent
analysis, design, and implementation steps.

4 THE LINKED LIST DOMAIN
Many of the readers are certainly familiar with linked
lists, as they are one of the fundamental data structures
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at the core of Computer Science curricula. The main idea
behind linked lists is that different units of information
can be “linked” one after each other and then accessed
sequentially. The unit of information in a linked list is
called node. A node contains the data that has to be
stored and a pointer to the following node. A pointer is an
abstraction of the physical location of a node in a com-
puter’s memory. To retrieve the information contained
in a node, it is necessary to “follow the pointer.” A list
starts with a pointer to the first node, called a header. The
end of a list is indicated by the null pointer.

A common graphical representation of linked lists uses
boxes and arrows. A box represents a node; it is divided
in two parts, one representing the information fields,
the other representing the pointer to the next node. An
arrow, starting from the pointer part of a box and ending
to another box, represents a link between two nodes. For
example, Figures 3 and 4 show representations of linked
lists within the interface of iList.

To effectively master linked lists, students need to
understand the static properties of the structure and the
dynamic operations necessary to store, organize, and
retrieve information from it. More complex operations
are built on top of basic ones such as traversal of a list,
insertion of a new node, and deletion of an existing node.

We chose to focus on linked lists for several reasons.
• Linked lists are usually presented early in Computer

Science curricula. Thus, more students see this topic.
• According to our experience as Computer Science

instructors, students struggle with linked lists, more
than with many other data structures.

• The fundamental concepts of linked structures,
pointer manipulations, object allocation, and traver-
sals, which students learn in the context of linked
lists, are all necessary for more complicated data
structures, such as trees. Linked lists are important
because students can learn these concepts in a rel-
atively simple context and will be already familiar
with them when trying to understand more compli-
cated structures.

• Part of what students learn while they struggle
with linked lists is to think about an abstract visual
model of their data, and to think of steps in a pro-
gram/algorithm as making changes to that model.
Mastering that way of thinking [33] is a huge step
for students, and one that they need to make to
continue successfully in Computer Science.

There are several issues that make learning and teach-
ing this subject difficult. For example, what is the ap-
propriate level of detail of an explanation? Because of
the abstract nature of this topic, high level explanations
of linked lists tend to be confusing. In order to un-
derstand them, detailed examples should be provided.
However, these examples can expose the students to an
overwhelming amount of detail.

Another teaching issue is the choice of a top-down or
bottom-up strategy. In a top-down approach, the general
concepts would be explained before presenting more

details and examples/exercises, whereas a bottom-up ex-
planation would start from examples and proceed with
generalizations from there. A problem with top-down,
which is the most widely used approach in classrooms, is
that students could understand nothing before facing the
examples, therefore “wasting” any previous explanation.
A problem with the bottom-up approach, used mainly
by self-learners, is that students can get stuck on details
that do not help the abstraction/generalization process.

There are also language and representations issues.
When talking about data structures and algorithms, we
can use natural language descriptions, graphics and
diagrams, programming languages, and pseudo-code
descriptions. All these representations have their advan-
tages and disadvantages, and since there is no “best”
description, usually more than one of them is used at the
same time. Of course, the multiplicity of languages and
descriptions engender another difficulty for the students,
especially when the semantics of these languages is not
well known or misunderstood.

The issue of representation is known to the research
community, especially in the field of algorithm visual-
ization. Algorithm visualization is a technology used to
graphically show how algorithms, which are dynamic
procedures, work. A study showed that students using
it learn more only when they are actively engaged in the
manipulation of the representation, not just when they
passively watch it [34]. This finding is consistent with
other research in Cognitive Science, which points to the
same conclusion [35].

5 DESCRIPTION OF ILIST

We are developing multiple versions of iList, capable
of delivering feedback of increasing complexity. We
will now describe the first two versions of the system
and their evaluation with students in classrooms. Our
methodology crucially relies on controlled comparisons
between versions of iList that differ in few important
features. Only in this way we can assess whether a new
feature that appears to be educationally or empirically
motivated is really conducive to learning and should be
retained in further enhancements to iList.

The iList system provides a student with a simulated
environment where linked lists can be seen and manipu-
lated. The student is supposed to already know at least
a basic definition of linked lists. Lists are represented
graphically, and can be manipulated with programming
language commands. Students are asked by the system
to solve problems in this environment, such as insert
new nodes in a given linked list, remove nodes, or
perform other more complicated operations. As a stu-
dent is working towards a solution, the system provides
feedback to help the student make progress.

The architecture of iList reflects the typical scheme of
an Intelligent Tutoring System. It is depicted in Figure 2.
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Fig. 3. Screenshot of iList – Step-by-step problem

5.1 Graphical user interface
The graphical user interface is responsible for the main
interaction with the student. Snapshots of the interface
can be seen in Figures 3 and 4. The interface is divided
in four main parts: an area containing the description
of the problem to be solved; an area reporting the
history of feedback messages given to the student; an
area representing the current state of the linked list
virtual machine; and an area where students can enter
commands and see a history of the previously executed
operations. Using this interface, students can interac-
tively manipulate the data structures using C++ or Java
commands. Depending on the problem type, either the
effect of individual commands are reflected immediately
on the graphical representation, or a block of commands
is executed at once in the simulated environment. The
command interpreter is quite resilient and tries to un-
derstand the user input even if it is slightly inaccurate.
This allows the student to focus more on the semantics
of statements rather than on language dependent details.

5.2 Problem model
A problem is given to the student in the form of a
textual description and one or more initial scenarios. The
initial scenario is integrated into the working state space,

Fig. 4. Screenshot of iList – Block of code problem

which includes relevant domain elements like variables
and nodes. The student is asked to progressively modify
the state space by interactively providing a sequence of
operations, until the desired configuration of the data
structure has been reached.

The iList system supports two types of problems. The
first kind of problems can be solved interactively, step-
by-step (Figure 3). Students can enter a command into
the system, and the system simulates the effect of that
command, showing the effect of the action immediately
on the simulated scenario. The second type of problems
requires writing a complete snippet of code, typically
involving structured conditional constructs like loops
(Figure 4). Problems of this type usually introduce more
than one initial scenario and ask the student to write
code that should work correctly in all of them. This en-
courages the student to abstract away the specific details
of a scenario and think about more general algorithms
for solving problems on a wider range of situations.

The curriculum included in iList is currently com-
posed of seven problems, five of the first type and two
of the second type. These problems have been carefully
crafted based on our experience as computer science
educators and on published CS curricula, such as ACM
[30]. The goal is to challenge the students with common
difficulties in manipulating linked lists. The problems are
defined in iList using a human-readable XML format,
which makes it easy to add new problems as needed.

5.3 Constraint evaluator

When the student believes he/she is done with the
current problem, the current state space is submitted to
a constraint evaluator that checks the correctness of the
solution. The usage of constraints in iList is motivated
by a methodology called constraint-based modeling. We
now briefly describe how constraint modeling works and
then explain its application in the linked list domain.

Originally developed from a cognitive theory of how
people might learn from performance errors [17], [36],
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constraint-based modeling has grown into a methodol-
ogy used to build full-fledged ITSs [14], and an alter-
native to the model tracing approach adopted by other
ITSs, such as [12]. In a constraint-based system, domain
knowledge is modeled with a set of constraints. A con-
straint is a unit composed of a relevance condition and a
satisfaction condition. A constraint is irrelevant when the
relevance condition is not satisfied; it is satisfied when
both relevance and satisfaction conditions are satisfied;
it is violated when the relevance condition is satisfied
but the satisfaction condition is not.

In the context of tutoring, constraints are matched
against student solutions. Constraints that are satisfied
correspond to knowledge that students have acquired,
whereas violated constraints correspond to gaps or in-
correct knowledge. An important feature is that there is
no need for an explicit model of students’ mistakes, as
opposed to buggy rules in model tracing. The possible
errors are implicitly specified as the possible ways in
which constraints can be violated. This property greatly
simplifies the difficult and time consuming task of
knowledge modeling in an ITS.

Computationally, the evaluation of constraints is fairly
simple and efficient. Each constraint is implemented as a
computational unit with three fundamental functions: a
boolean function checking the relevance of the constraint
with respect to the solution, a boolean function checking
the satisfaction of the constraint, and a feedback function
responsible to return relevant information used to gen-
erate feedback for the student. A constraint is violated
if the logic implication isRelevant⇒ isSatisfied is false for
that particular state space.

In the linked list domain, there are several properties
that a solution should have in order to be correct.
For example, a list should contain the correct values,
as specified in the description of each problem; lists
should be free of cycles; lists should not terminate with
undefined or incorrect pointers; no nodes should be
made unreachable from any of the variables, i.e., lost
in the heap space; nodes should be correctly deleted
when necessary (this applies specifically to non-garbage
collected languages, like C++). With these properties
in form of constraints, iList can catch many common
mistakes students make.

The constraint evaluator has access to two sources
of information: the current student solution, and an
exemplary correct solution provided with the definition
of the problem, which is not necessarily the only pos-
sible correct solution of the problem. Having a correct
reference solution allows iList to evaluate the problem-
dependent properties of a student’s solution, like the
expected values of the final lists.

Overall, the adoption of a constraint-based paradigm
to evaluate student solutions provides us with the main
advantage that many different correct student solutions
are recognized and accepted by the system. This is im-
portant in a domain like data structures, where alterna-
tive procedures can be used to achieve the same results.

On the downside, this type of constraint evaluation
cannot tell if the student is following a path that will
never lead to a correct solution before it is too late for
the student to recover from that path. In the current work
section, we will briefly touch on an additional model that
we are implementing to overcome this difficulty.

5.4 Feedback manager
The feedback manager is responsible for generating feed-
back messages for the students. Currently, feedback is
given by iList in three main circumstances.

1) The student enters a command that iList cannot un-
derstand. We will call the feedback corresponding
to this situation syntax feedback.

2) The student enters a command and iList under-
stands it, but the command cannot be executed
because of the contingent state of the virtual ma-
chine. For example, the student might try to access
a variable that has never been declared, or reference
a node that does not exist. We will refer to this type
of feedback as execution feedback.

3) The student explicitly asks for his/her solution to
be evaluated by pressing the “submit” button on
the user interface. The system in this case will
deliver what we will call final feedback.

The amount and sophistication of feedback differenti-
ates the versions of the system developed and tested so
far. In particular, the main difference between the two
versions reported in this paper is the quality of syntax
feedback and execution feedback.

In both versions of iList, final feedback comes from
a collection of feedback units associated to the individ-
ual constraints that have been violated. The feedback
manager collects these units and assembles them into
a message directed to the student. An example of such
feedback can be seen in Figure 3.

In the first version of iList, iList-1, both syntax and ex-
ecution feedback are very simple. Syntax error messages
are of the form “I’m sorry, I can’t understand XXX,”
where XXX is the command entered by the student.
Similarly, execution error messages are of the form “You
tried to execute XXX. I’m sorry, I can’t do that.”

The second version of iList, iList-2, provides substan-
tial improvements to both syntax and execution feed-
back. Execution feedback messages in iList-2 are of the
same form of those delivered by iList-1, plus a brief
explanation of the reason why the command cannot be
executed. For example, if a student tried to reference a
variable T that was never declared, the system would
report that “variable T does not exist.” This information
is available from the execution engine of the virtual
machine, and it was not difficult to implement this
additional feedback. The most challenging improvement
is on syntax feedback, explained in the following section.

5.5 Improved syntax feedback in iList-2
This section describes a new module in iList-2 that seeks
to provide useful feedback in the presence of incorrect
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C++/Java syntax, or syntax outside the language subset
understood by iList. The lack of meaningful feedback for
syntax-related problems caused a great deal of frustra-
tion in our first iList trials.

The domain of tutoring interest for iList is really the vi-
sual model of linked lists, problem-solving in the visual
model, and the correspondence between code actions
and actions in the visual model. Thus, the original iList
system did not tutor on syntax in any way. Syntax
errors were flagged as errors, but students received no
more information than the message “I didn’t understand
that.” Students were expected to be advanced enough to
correct their syntax errors on their own.

The system responded with “I didn’t understand that”
in another circumstance as well, namely when it received
syntactically correct C++/Java code using constructs
outside of the language subset understood by iList. iList
restricts the C++/Java constructs it allows not only to
simplify the system, but also to force students towards
“the right solution,” which means a solution that gener-
alizes, or which does not contain unneeded complexity.
For example, early problems have the students entering
statements one-at-a-time that operate on a concrete set of
variables and nodes. If the problem is to change the node
in list L with data value 6 to have data value 42, a valid
C++ solution might be L->link->link->link->data
= 42. However, this solution does not generalize to the
case in which L is an arbitrary list containing a node with
value 6. Thus, iList does not allow this kind of chaining
of ->’s. The student is forced into a solution like

Node *T = L;
T = T->link;
T = T->link;
T = T->link;
T->data = 42;

which generalizes to

Node *T = L;
while(T->data != 6) {

T = T->link;
}
T->data = 42;

The “I didn’t understand that” messages generated
quite a bit of frustration in students, which was voiced
in survey responses (see the evaluation section). The
expectation that students knew enough to understand
and correct their own syntax errors was ill-founded, as
was the expectation that they would remember/realize
that if’s, while’s and for’s were not allowed in single-
statement input. It became clear that the system would
have to respond to syntax issues with something more —
something that at least explained what was wrong with
the input, if not actually initiating new tutoring actions.

The syntax error response module generates feedback
for input that iList is unable to understand. Recognizing
the “for,” “while,” and “if” keywords is trivial, and
the module responds to the presence of these keywords

by explaining that, although they are valid C++/Java
constructs, iList doesn’t allow them because it wants
students to solve the problem a different way. Respond-
ing to genuine syntax errors is trickier. Generating good
syntax error messages, whether in iList or in actual
interpreters/compilers, requires good guesses as to what
the programmer actually intends, and the remainder of
this section is a brief description of how the module
makes such guesses, and how it generates feedback.

Compilers and interpreters generally build a tree rep-
resentation of a program from input text by (1) tok-
enization (grouping input text into chunks called tokens)
and (2) parsing (hierarchically organizing tokens based
on the rules of some grammar) [37]. For valid input
in a well-defined programming language the process is
unambiguous in the sense that the grouping of char-
acters into tokens is unique, and the organization of
tokens based on grammar rules is unique. The theory
of tokenization and parsing is very well developed, so
that huge programs in complex programming languages
can be tokenized and parsed quickly. For invalid inputs,
theory has much less to say. Detecting that input is in-
valid is no problem, but generating good error messages
is hard. Most compilers/interpreters do not deal with
errors in the tokenization phase unless they are actually
faced with a sequence of characters that cannot be to-
kenized. Thus errors are dealt with primarily through
the parser alone, and they are dealt with by throwing
away tokens until what is left fits the grammar rules.
This approach is efficient and produces error messages
quickly even for large programs in complex languages.
However, the approach is limited by not considering
alternate tokenizations; it only subtracts from the input,
never adding or reinterpreting. Moreover, the approach
is to parse according to the actual grammar, instead
of allowing “error” grammar rules embodying common
misconceptions. In our case, the input is a single state-
ment, and the language is a small subset of C++/Java.
Thus efficiency is not much of an issue, and we can
pursue a more wide-ranging approach to understanding
incorrect input.

The module tokenizes text and parses token streams
with respect to a grammar, just as standard parsers do.
However, it produces many tokenizations and many
parses, each weighted by some measure of likelihood.
Valid input gets tokenized and parsed with weight zero.
For invalid input, higher weighted tokenizations and
parses are deemed to be less likely. The module returns
the lowest weighted tokenization and parse, provided
one exists below a prescribed threshold, along with an
error message if that weight is non-zero.

Tokenizations are generated by adding error-
keywords to the set of actual keywords, and by
using the standard edit distance (Damerau-Levenshtein
distance) metric to find plausible interpretations
accounting for typos and misspellings (see e.g. [38],
p.364). Though there are many potential tokenizations,
the system only generates them one-by-one in order
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TABLE 1
Examples of syntax errors and messages

input p>link = NULL;

g++ error: comparison between distinct
pointer types Node* and int
(*)(const char*, const char*)
throw () lacks a cast

error: lvalue required as left
operand of assignment

iList You’re trying to write a pointer
assignment statement, right?
* Did you mean "->" instead of ">"?

note Here an alternate tokenization actually interprets
">" as "->", with small penalty since the edit
distance is small.

input 8 = p->link;

g++ error: lvalue required as left
operand of assignment

iList You’re trying to write a pointer
assignment statement, right?
* You’re using a number like
it’s a Node pointer object.

note Here the grammar rule plval → num, which has
positive error weight, allows the parse succeed by
interpreting a number as a pointer “l-value”.

input delete *p;

g++ error: type class Node argument
given to delete,
expected pointer

iList You’re trying to write a delete
statement, right?
* You should give delete a pointer
to a Node, not the Node itself,
so there’s no need to dereference
with *.

note Here the system can parse by ignoring the *, e.g.
tokenizing *p as the name p, or by applying the
error grammar rule dltstmt→ dlt star plval. The
weight of the later is less, therefore that is the
parse the system generates.

of increasing weight, until a solution is found or a
threshold is reached. Tokenization steps of positive
weight have error messages associated with them.

Tokenized input is parsed according to a grammar, but
the grammar includes “error rules”, e.g. pexp → num,
which allows a number to be interpreted as a pointer
expression. Each error rule has a positive weight asso-
ciated with it and, just as with tokenizations, parses are
generated one-at-a-time in order of increasing weight.
Each error rule also has a message associated with it.

The module described is limited in many ways. Most
notably, it models errors as independent — for example,
the weight of the parse for 2->link = 5->link is
twice the weight of the rule plval → num. This isn’t
really appropriate, since making the error the first time
makes it much more likely it will happen again. In fact,

in some sense, there is only one error here; or perhaps
more accurately, only one misconception. Conversely,
while a single typo is not uncommon and should get
small weight, there are not likely to be many typos in a
single statement. So the costs of typos should increase
with their frequency in a given input. In short, the
system would be improved by making error weights
context-dependent. Another important limitation of the
current implementation is that the module works only
for the step-by-step problems, and not for those requir-
ing and entire block of code as input. This limitation will
be removed in a future version of iList.

Despite its limitations, the syntax module can generate
more explanatory messages than those usually generated
by standard compilers, such as g++. Examples of mes-
sages can be seen in Table 1.

6 EVALUATION OF ILIST

Over three school semesters, we deployed the two ver-
sions of iList in three classrooms at the University of
Illinois at Chicago and the United States Naval Academy.
More than 120 students worked with the system as
part of their coursework. From those that consented to
participate in our evaluation study, we collected data
on learning outcomes, user satisfaction, and logs of the
interaction of those students with iList. In this section
we describe our experimental procedure and results on
learning outcomes, user satisfaction, and log analysis.
We will show a positive learning trend among our four
experimental conditions; an increase in user satisfaction
with iList-2, the system with more sophisticated feed-
back; and an indication of higher efficiency for those
students that interacted with iList-2.

6.1 Experimental procedure
During their regular class time, students participated in a
single lab session 1 hour 15 minutes to 1 hour 30 minutes
long. We asked them to complete a pre-test, then work
with iList, complete an identical post-test, and finally fill
in a survey. More recently, starting with those students
working with iList-2, we also asked them to complete a
working memory capacity test.

All the students were taking an introductory data
structures class, and the lab session with iList was
scheduled right at the time when the topic of linked lists
was just being introduced. The students had no previous
experience with iList. The system was presented to them
on the day of the experiment. Originally, the instructor
was in charge of giving the student a short tutorial on
the system by solving the first problem of iList’s cur-
riculum in front of them; later, we replaced the instructor
intervention with a brief written tutorial providing some
minimal information on the system and demonstrating
how to solve the same first problem. Also, in the original
experiments, pre-test, post-test, and survey were hand
written; later, we converted them into electronic format,
without altering their content. We are aware that those
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changes on the experimental procedures might have had
an effect on the results, but we believe the impact is
negligible compared to the many other sources of noise
that affect real-world experimental settings like ours.

The pre-test and post-test are identical, and they de-
rive directly from those we developed for our study of
human tutoring [6], [7]. In particular, our pre/post test
includes the first two questions from that study (the only
two problems on linked lists), plus a third one developed
specifically for the experiments with iList. We decided to
add a question because we believed that two problems
would not be enough to accurately assess the knowledge
of our students. Thus, although scaled to make them
comparable, the scores of students working with human
tutors are based on two questions, whereas the scores of
those working with iList are based on three questions.

The questions in the test have been carefully crafted
to assess a deep level of knowledge of the topic, and
they are somewhat difficult for students at that level.
The first problem presents a fragment of code and an
initial scenario. Students have to draw the final state of
the given linked lists after the execution of the code. The
second question presents the same code, with a syntac-
tically correct but semantically wrong variation which
would cause the code to malfunction. The students are
asked to explain why the modified code does not work
as expected. The third question requests the students to
write a sequence of operations that moves the first node
of a given list to the end of that list. These three questions
assess a mix of important analytical, diagnostic, and
operational skills in the linked list domain. All the
questions have been graded by the researchers on a scale
from 0 to 5, following written guidelines. For the reader’s
convenience, all the scores have been rescaled to a 0 to
1 decimal scale.

6.2 Learning outcomes
Our primary measure of learning outcome is learning
gain, defined as the difference between post-test score
and pre-test score. We ran a four-way comparison of
learning outcomes on the following groups:

1) Students doing an irrelevant activity between pre
and post test (control group).

2) Students working with iList-1, the original version
with simple feedback.

3) Students working with iList-2, the version with
more sophisticated syntax and execution feedback.

4) Students working with human tutors.
Number of students, pre-test score, post-test score, and
learning gain for each group are reported in Table 2.

ANOVA revealed an overall significant difference
across the four groups (F (3, 220) = 4.93, P < 0.01).
Post-hoc Tukey test showed only a significant difference
between the control group and the human group (P <
0.01), and a marginally significant difference between
the control group and iList-2 (P < 0.1). The difference
between iList-1 and iList-2 is not significant, but the

TABLE 2
Test scores (range: 0 to 1)

Tutor N
Pre-test Post-test Gain
µ σ µ σ µ σ Eff. Size

None 53 .34 .22 .35 .23 .01 .15 -
iList-1 61 .41 .23 .49 .27 .08 .14 .49
iList-2 56 .31 .17 .41 .23 .10 .17 .59

Human 54 .40 .26 .54 .26 .14 .25 .88

TABLE 3
Survey: scaled questions (1=No to 5=Yes)

Question
iList-1 iList-2
µ σ µ σ

1. Do you feel that iList helped you learn
about linked lists?

2.9 1.1 2.9 1.1

2. Do you feel that working with iList
was interesting?

4.0 1.1 3.8 1.1

3. Did you read the verbal feedback the
system provided?

4.1 1.1 4.1 1.0

4. Did you have any difficulty under-
standing the feedback?

2.8 1.5 2.9 1.2

5. Did you find the feedback useful? 2.6 1.2 3.0 1.0
6. Did you ever find the feedback mis-
leading?

2.3 1.3 2.4 1.1

7. Did you find the feedback repetitive? 3.8 1.2 3.1 1.1

progression of effect sizes indicates that the performance
of iList-2 is even less distinguishable from human tu-
tors than that of iList-1. Although this is not a strong
evidence that iList-2 is better than iList-1, this result is
encouraging and, overall, the performance of iList is very
respectable compared to human tutors.

6.3 User satisfaction

In addition to learning outcomes, we conducted a survey
to assess the satisfaction of the students using iList.
Our survey includes eight questions. The first seven
are scaled questions, to which students replied with
a number between 1 (meaning “no”) and 5 (meaning
“yes”). The eighth question is an open ended question,
asking the students for general comments on the system.
Mean and standard deviation of students’ scores on each
question for each version of the system are reported in
Table 3. Notice that each individual student has seen
only one version of the system.

ANOVA revealed no significant differences in scores
between the two groups in questions 1, 2, 3, 4, and
6; a marginally significant difference on question 5
(F (1, 113) = 3.64, P < 0.1); and a significant difference
on question 7 (F (1, 113) = 11.8, P < 0.01). These
differences indicate that students working with iList-2
found the feedback more useful and less repetitive than
those working with iList-1.

Linear regression of survey answers on learning gain
revealed some correlations between students’ feelings
about the system and learning. The students who felt
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that iList helped them the most or found the feedback
useful did indeed learn the most (question 1: β = 0.04,
t(113) = 3.67, P < 0.01; question 5: β = 0.03, t(113) =
2.84, P < 0.01). Those who had trouble understanding
the feedback or found the feedback repetitive learned
less (question 4: β = −0.02, t(113) = −1.88, P < 0.1 –
marginally significant; question 7: β = −0.04, t(113) =
−3.32, P < 0.01). The answers to questions 2, 3, 5, and
6 were not significantly correlated with learning gain.

Finally, the answers to the last open question provided
us with useful insights on several practical issues that
students had with the system, which will be taken into
account as new versions are developed.

6.4 Log analysis
The interaction of the students with iList has been
comprehensively logged. From the logs, we extracted
several features. We compared these features across the
two systems using ANOVA, and we tested their impact
on learning using linear regression (Table 4). In this re-
gression study, each variable has been used as a predictor
of learning gain in multiple independent models.

6.4.1 Problem solving
The problems included in iList’s curriculum are of in-
creasing difficulty, as can be seen from the success rate
for each problem (Figure 5). We found a strong posi-
tive correlation between success rate and learning gain:
the more problems the students solved, the more they
learned. The correlation between attempt rate and learn-
ing gain is also positive but only marginally significant
(Table 4). Interestingly, if we look at the differences in
problem solving performance of the students working
with the two versions of the system, we can see that
the students working with iList-2 solved fewer problems
than those working with iList-1 (Figure 6 and Table 4).

The question now is, if solving more problems leads to
more learning, and students working with iList-2 solved
fewer problems, why these students did not learn less
that their peers working with iList-1. There should be
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some other reason for which problem solving in iList-
2 turned out to be more “efficient” than in iList-1. This
difference in efficiency is even more evident looking at
the β coefficients of the linear regression of learning gain
on problem solving for the two iList groups separately.
With separate groups, the correlation is still strongly
significant (P < 0.01 in both cases), but we have β = 0.13
for iList-1 and β = 0.22 for iList-2. Thus, we can see that
iList-2 is more “problem efficient” than iList-1, in the
sense that students needed to solve fewer problems to
learn the same amount. Given that the main structural
difference between iList-1 and iList-2 is the sophistica-
tion of feedback, it looks plausible that the difference
mentioned before can be at least in part justified by the
feedback itself.

6.4.2 Pre-test scores
Linear regression revealed no significant correlation be-
tween pre-test score and learning gain. This is a notable
difference with respect to our study of human tutoring,
where there was a significant negative correlation be-
tween pre-test score and learning gain.

6.4.3 Working memory capacity
Although we are collecting pre-test scores to take into
account students’ previous knowledge, we feel that there
is much more to students’ individual characteristics than
what we can capture with our pre-test, and we believe
that many of these “hidden” student features might
have a profound impact on their learning. With the
introduction of iList-2, we started to collect a measure
of working memory capacity [39], [40], assessed with an
operation span test [41], which we implemented in iList.
We chose to record working memory capacity because
previous research showed that it correlates very well
with other measures of general cognitive abilities, and
the test can be taken quickly and easily by the students.

We found a marginally significant correlation between
the word score (which is the main score) of the operation
span test and learning gain, and a significant correlation



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 10

TABLE 4
Comparison of the two systems and correlation with learning

Feature
iList-1 iList-2 Difference of means Regression on learning
µ σ µ σ ∆21 df F P β df t P R2

Problem attempt rate 88% 19% 80% 23% −8% 1, 115 4.91 < .05 .12 115 1.73 < .1 .02

Problem success rate 56% 36% 38% 31% −18% 1, 115 8.53 < .01 .15 115 4.00 < .01 .11

Operation span (words) N/A 29.8 8.55 N/A −12.1 54 −1.78 < .1 .08

Operation span (math) N/A 41.2 1.35 N/A −2.24 54 −2.12 < .05 .06

Time (minutes) 42.5 17.2 33.0 8.6 −9.5 1, 115 13, 78 < .01 ns

Student actions 159 67 110 51 −49 1, 115 19.2 < 0.01 ns

Action density (act/min) 4.0 1.6 3.3 1.2 −0.7 1, 115 6.48 < 0.05 ns

Syntax errors 20.4 14.1 16.7 12.2 ns ns

Syntax error ratio 0.21 0.13 0.22 0.13 ns ns

Execution errors 12.9 10.5 7.9 6.0 −5.0 1, 115 9.54 < 0.01 ns

Execution error ratio 0.12 0.07 0.11 0.06 ns ns

between the math score of operation span and learning
gain (Table 4). Notice that, in both cases, the correlation is
negative, suggesting that students with higher working
memory capacity learned less than those with lower
working memory capacity.

6.4.4 Time on task
Students working with iList-2 spent significantly less
time with the system than those working with iList-
1 (Table 4). Linear regression revealed no significant
correlation between the time spent by the students with
the system and learning gain. This is surprising, because
it contradicts our result with human tutors, where we
found a significant positive correlation between the time
a student interacted with the tutor and learning gain.

6.4.5 Student activity
We counted the number of actions students took while
solving problems. An action is either a programming
command (correct or incorrect), or an undo/redo/restart
meta-command. As Table 4 shows, students that worked
with iList-2 took significantly fewer actions than those
working with iList-1. Also, there is a significant differ-
ence in action density (number of actions over time),
which might indicate that students with iList-2 spent
more time thinking before taking an action. We found
no significant correlation between the number of student
actions and learning gain, nor between action density
and learning gain, for any category of actions.

6.4.6 Syntax and execution errors
We wanted to test whether the better syntax end ex-
ecution feedback in iList-2 had a direct effect on the
number of syntax errors and execution errors that stu-
dents make when they solve problems. As reported in
Table 4, we found no significant difference between the
number of syntax errors that students make with the two
versions of iList. We also found that students interacting
with iList-2 make significantly less execution errors than
those working with iList-2. However, both syntax and

execution error ratio, defined as the ratio of the number
of errors over the number of programming commands
given by the student, are statistically indistinguishable.
Finally, we found no significant correlation between the
number of errors and learning gain.

7 A STUDY OF HUMAN TUTORING

As we mentioned in the methodology section, we are
also conducting a study of human tutoring, in order to
uncover empirical evidence for effective tutoring strate-
gies, which we will incorporate in future versions of
iList [6], [7]. This section briefly describes the study and
reports some recent findings. In particular, our findings
about the importance of positive feedback and feedback
initiative are providing direct guidance for the further
development of iList (see the current work section).

7.1 Description of the study
We collected a corpus of 54 one-on-one tutoring sessions
on data structures, specifically on linked lists, stacks, and
binary search trees. Each individual student participated
in only one tutoring session, with a tutor randomly
assigned from a pool of two tutors. One of the tutors is
an experienced Computer Science professor, with more
than 30 years of teaching experience. The other tutor
is a senior undergraduate student in Computer Science,
with only one semester of previous tutoring experience.
Each tutoring session lasted approximately 40 minutes.
The tutoring sessions were videotaped and transcribed.
The transcripts were produced according to the rules and
conventions described in the transcription manual of the
CHILDES project [42]. Additionally, they were enriched
with timestamps at the beginning of each utterance, to
keep track of the temporal position of the utterance in the
video recording. An utterance is a natural unit of speech
bounded by breaths or pauses, manually identified by
the transcribers. Students took a pre-test right before the
tutoring session, and an identical post-test immediately
after. The test had 2 problems on linked lists, 2 problems
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TABLE 5
Learning gains and t-test statistics

Topic Tutor µ σ t df P

List

Novice .09 .22 -2.00 23 .057

Expert .18 .26 -3.85 29 < .01

Combined .14 .25 -4.24 53 < .01

None .01 .15 -0.56 52 ns

Stack

Novice .35 .25 -6.90 23 < .01

Expert .27 .22 -6.15 23 < .01

Combined .31 .24 -9.20 47 < .01

None .05 .17 -2.15 52 < .05

Tree

Novice .33 .26 -6.13 23 < .01

Expert .29 .23 -6.84 29 < .01

Combined .30 .24 -9.23 53 < .01

None .04 .16 -1.78 52 ns

on stacks, and 4 problems on binary search trees. An
additional control group of 53 students took the pre
and post tests, but instead of participating in a tutoring
session they attended a lecture about an unrelated topic.

7.2 Learning outcomes
Paired samples t-tests revealed that post-test scores are
significantly higher than pre-test scores in the two tu-
tored conditions for all the topics, except for linked lists
with the less experienced tutor, where the difference is
only marginally significant. If the two tutored groups
are aggregated, there is significant difference for all
the topics. Students in the control group did not show
significant learning for linked lists and binary search
trees, and only marginally significant learning for stacks.
Means, standard deviations, and t-test statistic values are
reported in Table 5.

There is no significant difference between the two tu-
tored conditions in terms of learning gain, expressed as
the difference between post-score and pre-score. This is
revealed by ANOVA between the two groups of students
in the tutored condition. For lists, F (1, 53) = 1.82,
P = ns. For stacks, F (1, 47) = 1.35, P = ns. For trees,
F (1, 53) = 0.32, P = ns.

The learning gain of students that received tutoring is
significantly higher than the learning gain of the students
in the control group, for all the topics. This is showed
by ANOVA between the group of tutored students (with
both tutors) and the control group. For lists, F (1, 106) =
11.0, P < 0.01. For stacks, F (1, 100) = 41.4, P < 0.01. For
trees, F (1, 106) = 43.9, P < 0.01. Means and standard
deviations are reported in Table 5.

7.3 Regression analysis
The distribution of scores across sessions shows a lot
of variability (Table 5). In all the conditions, there are
sessions with very high learning gains, and sessions with
very low ones. This observation and the previous results

suggest a new direction for subsequent analysis: instead
of looking at the characteristics of a particular tutor, it
is better to look at the features that discriminate the
most successful sessions from the least successful ones.
As advocated in [7], a sensible way to do that is to adopt
an approach based on multiple regression of learning
outcomes per tutoring session onto the frequencies of
the different features. The following analysis has been
done with linear regression models.

7.3.1 Prior knowledge
First of all, we want to factor out the effect of prior knowl-
edge, measured by the pre-test score. Linear regression
revealed a strong effect of pre-test scores on learning gain
(Table 6). However, the R2 values show that there is a lot
of variance left to be explained, especially for lists and
stacks, although not so much for trees. Notice that the β
weights are negative. That means students with higher
pre-test scores learn less then students with lower pre-
test scores. A possible explanation is that students with
more previous knowledge have less learning opportunity
than those with less previous knowledge.

7.3.2 Time on task
Another variable that is recognized as important by
the educational research community is time on task, and
we can approximate it with the length of the tutoring
session. Surprisingly, session length has a significant
effect only on linked lists (Table 6).

7.3.3 Student activity
Another hypothesis is that the degree of student activity,
in the sense of the amount of student’s participation
in the discussion, might relate to learning [43], [44]. To
test this hypothesis, the following definition of student
activity has been adopted:

student activity =
# of turns− # of short turns

session length

Turns are the sequences of uninterrupted speech of the
student. Short turns are the student turns shorter than
three words. Subtracting the number of short turns has
the effect of eliminating those turns composed exclu-
sively by words like “okay” and “uh uh,” which usually
do not contribute much content to the conversation,
although they are important back-channelling elements.
Of course, this is just an approximation, because sub-
stantive answers that are three words or less are certainly
possible. Linear regression revealed no significant effect of
this measure of student activity on learning gain.

7.3.4 Feedback
The dataset has been manually annotated for episodes
where positive or negative feedback is delivered. All
the protocols have been annotated by one coder, and
some of them have been double-coded by a second
one (intercoder agreement: kappa = 0.67). Examples of
feedback episodes are reported in Figure 7.
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T: do you see a problem?
T: I have found the node a@l, see here I found the node b@l, and then I put

g@l in after it.
Begin + T: here I have found the node a@l and now the link I have to change is +...

S: ++ you have to link e@l <over xxx.> [>]
End + T: [<] <yeah> I have to go back to this one.

S: *mmhm
T: so I *uh once I’m here, this key is here, I can’t go backwards.

Begin - S: <so you> [>] <you won’t get the same> [//] would you get the same point
out of writing t@l close to c@l at the top?

T: oh, t@l equals c@l.
T: no because you would have a type mismatch.

End - T: t@l <is a pointer> [//] is an address, and this is contents.

Fig. 7. Positive and negative feedback (T = tutor, S = student)

TABLE 6
Linear regression – human tutoring

Topic Model Predictor β R2 P

List

1 Pre-test -.45 .18 < .05

2
Pre-test -.40

.28
< .05

Session length .35 < .05

3

Pre-test -.35

.36

< .05

Session length .33 .05

+ feedback .46 .05

- feedback -.53 < .05

Stack

1 Pre-test -.53 .26 < .01

2
Pre-test -.52

.24
< .01

Session length .05 ns

3

Pre-test -.58

.33

< .01

Session length .01 ns
+ feedback .61 < .05

- feedback -.55 < .05

Tree

1 Pre-test -.79 .61 < .01

2
Pre-test -.78

.60
< .01

Session length .03 ns

3

Pre-test -.77

.59

< .01

Session length .04 ns
+ feedback .06 ns
- feedback -.12 ns

All

1 Pre-test -.52 .26 < .01

2
Pre-test -.54

.29
< .01

Session length .20 < .05

3

Pre-test -.57

.32

< .01

Session length .16 .06

+ feedback .30 < .05

- feedback -.23 .05

The counts of positive and negative feedback episodes
have been introduced in the regression model (Table
6). The model showed a significant correlation between
feedback and learning for linked lists and stacks, but no
significant correlation for trees. Interestingly, the correla-
tion with positive feedback is positive, but the correlation
with negative feedback is negative, as can be seen from
the sign of the β values.

We additionally annotated the episodes of positive and
negative feedback for initiative. An episode can be initi-

TABLE 7
Feedback initiative: mean (std) number of episodes

Student initiative Tutor initiative
Negative feedback 1.7 (1.2) 2.0 (1.2)
Positive feedback 3.9 (3.8) 10.2 (9.1)

ated either by the student or by the tutor. In the first case,
the student volunteers some information without being
asked or prompted by the tutor, and the tutor replies
with some feedback. In the second case, the tutor first
asks or prompts the student (not necessarily verbally),
then the student replies, and finally the tutor provides
feedback on the student’s answer. The distribution of
initiative labels is reported in Table 7. The numbers in
the table are aggregated on the three topics, but splitting
the three topics apart revealed similar patterns.

ANOVA revealed overall significant differences on the
four groups (F (3, 325) = 43.27, P < 0.01). Tukey post-
hoc test revealed significant differences (P < 0.01) be-
tween positive-tutor and positive-student; positive-tutor
and negative-tutor; and positive-tutor and negative-
student. The difference between positive-student and
negative-student is marginally significant (P < 0.1) for
stacks, not significant for lists and trees. This result
suggests the importance of proactive feedback, which we
will briefly introduce in the current work section.

7.3.5 Direct procedural instruction
We annotated the dataset for direct procedural instruction
(DPI). In the context of problem solving, DPI occurs
when the tutor directly tells the student what to do.
This includes correct steps that lead to the solution of a
problem (e.g., “and there is nothing there, so we put six
right there”); high-level steps or subgoals (e.g., “it wants
us to put the new node that contains G in it, after the
node that contains B”); and tactics and strategies (e.g.,
“so with these kind of problems, the first thing I have to
say is always draw pictures”).

Linear regression showed a significant positive cor-
relation between DPI and learning gain for lists (β =
0.0038, t(49) = 2.69, P < 0.01, R2 = 0.11) and trees
(β = 0.0024, t(50) = 3.07, P < 0.01, R2 = 0.14). However,
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the significance is lost when including DPI as additional
variable in the multiple regression models showed in the
previous sections.

8 CURRENT DIRECTIONS AND CONCLUSIONS

The results in this paper suggest that iList is a useful and
effective system, and that improving the sophistication
of feedback can be beneficial to its performance. An-
other important point comes from our study of human
tutoring, that is giving us clear directions to guide the
evolution of iList. The importance of positive feedback
in human tutoring calls for an implementation of such
behavior in iList, as iList is currently delivering mostly
negative feedback in response to students’ mistakes.
Also, the predominance of tutor-initiated feedback and
the importance of direct procedural instruction indicate
that iList should not just wait for student actions be-
fore delivering feedback, but should create opportunities
such that feedback can be provided earlier.

In order for iList to deliver more feedback, the system
should be able to monitor more closely the solution
paths of the students, and intervene with appropriate
responses after or even before specific student actions.
To do so, we are currently building an innovative model
that is automatically generated from the logs of previous
students that worked with iList in our classroom trials.
This model is able to estimate the goodness of student
actions and solution paths. We are going to use this
model to implement two new behaviors in iList: reactive
feedback and proactive feedback. Reactive feedback will
be delivered in response to student actions that are
syntactically correct and have been successfully executed
in iList’s virtual machine. These actions can trigger nega-
tive or positive feedback, depending on their correctness
and pedagogical importance in the context of the current
solution path. Proactive feedback will be delivered by
iList after a student response has been elicited by a
prompt from iList, which will also be decided according
to the solution context. This behavior will involve a shift
of initiative from the student to the tutor, in the same
way human tutors frequently behave.

Now that we have showed that iList is effective in
helping students learn linked list, we will be glad to
broaden the diffusion of iList, allowing access to our
system to all the instructors who wish to use it in their
classroom, free of charge. Instructors are welcome to
contact us for further details.
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